Electrical fault-finding - general information
Note: Refer to the precautions given in “Safety first!” and in Section 1 of this Chapter before starting work. The following tests relate to testing of the main electrical circuits, and should not be used to test delicate electronic circuits (such as anti-lock braking systems), particularly where an electronic control unit (ECU) is involved.
General
1 A typical electrical circuit consists of an
electrical component, any switches, relays,
motors, fuses, fusible links or circuit breakers
related to that component, and the wiring and
connectors which link the component to both
the battery and the chassis. To help to pinpoint a
problem in an electrical circuit, wiring diagrams
are included at the end of this Chapter.
2 Before attempting to diagnose an electrical fault, first study the appropriate wiring diagram, to obtain a more complete understanding of the components included in the particular circuit concerned. The possible sources of a fault can be narrowed down by noting whether other components related to the circuit are operating properly. If several components or circuits fail at one time, the problem is likely to be related to a shared fuse or earth connection.
3 Electrical problems usually stem from simple causes, such as loose or corroded connections, a faulty earth connection, a blown fuse, a melted fusible link, or a faulty relay. Visually inspect the condition of all fuses, wires and connections in a problem circuit before testing the components. Use the wiring diagrams to determine which terminal connections will need to be checked, in order to pinpoint the trouble-spot.
4 The basic tools required for electrical faultfinding include: a circuit tester or voltmeter (a 12-volt bulb with a set of test leads can also be used for certain tests), a self-powered test light (sometimes known as a continuity tester), an ohmmeter (to measure resistance), a battery and set of test leads, and a jumper wire, preferably with a circuit breaker or fuse incorporated, which can be used to bypass suspect wires or electrical components.
Before attempting to locate a problem with test instruments, use the wiring diagram to determine where to make the connections.
5 To find the source of an intermittent wiring fault (usually due to a poor or dirty connection, or damaged wiring insulation), an integrity test can be performed on the wiring, which involves moving the wiring by hand, to see if the fault occurs as the wiring is moved.
It should be possible to narrow down the source of the fault to a particular section of wiring. This method of testing can be used in conjunction with any of the tests described in the following sub-Sections.
6 Apart from problems due to poor connections, two basic types of fault can occur in an electrical circuit - open-circuit, or short-circuit.
7 Open-circuit faults are caused by a break somewhere in the circuit, which prevents current from flowing. An open-circuit fault will prevent a component from working, but will not cause the relevant circuit fuse to blow.
8 Short-circuit faults are caused by a “short” somewhere in the circuit, which allows the current flowing in the circuit to “escape” along an alternative route, usually to earth. Shortcircuit faults are normally caused by a breakdown in wiring insulation, which allows a feed wire to touch either another wire, or an earthed component such as the bodyshell. A short-circuit fault will normally cause the relevant circuit fuse to blow.
Note: A short-circuit that occurs in the wiring between a circuit’s battery supply and its fuse will not cause the fuse in that particular circuit to blow. This part of the circuit is unprotected - bear this in mind when fault-finding on the vehicle’s electrical system.
Finding an open-circuit
9 To check for an open-circuit, connect one
lead of a circuit tester or voltmeter to either
the negative battery terminal or a known good
earth.
10 Connect the other lead to a connector in the circuit being tested, preferably nearest to the battery or fuse.
11 Switch on the circuit, bearing in mind that some circuits are live only when the ignition switch is moved to a particular position.
12 If voltage is present (indicated either by the tester bulb lighting or a voltmeter reading, as applicable), this means that the section of the circuit between the relevant connector and the battery is problem-free.
13 Continue to check the remainder of the circuit in the same fashion.
14 When a point is reached at which no voltage is present, the problem must lie between that point and the previous test point with voltage. Most problems can be traced to a broken, corroded or loose connection.
Finding a short-circuit
15 To check for a short-circuit, first
disconnect the load(s) from the circuit (loads
are the components which draw current from
a circuit, such as bulbs, motors, heating
elements, etc).
16 Remove the relevant fuse from the circuit, and connect a circuit tester or voltmeter to the fuse connections.
17 Switch on the circuit, bearing in mind that some circuits are live only when the ignition switch is moved to a particular position.
18 If voltage is present (indicated either by the tester bulb lighting or a voltmeter reading, as applicable), this means that there is a short-circuit.
19 If no voltage is present, but the fuse still blows with the load(s) connected, this indicates an internal fault in the load(s).
Finding an earth fault
20 The battery negative terminal is connected
to “earth” - the metal of the
engine/transmission and the car body - and
most systems are wired so that they only
receive a positive feed, the current returning via
the metal of the car body. This means that the
component mounting and the body form part
of that circuit. Loose or corroded mountings
can therefore cause a range of electrical faults,
ranging from total failure of a circuit, to a
puzzling partial fault. In particular, lights may
shine dimly (especially when another circuit
sharing the same earth point is in operation),
motors (eg wiper motors or the radiator cooling
fan motor) may run slowly, and the operation of
one circuit may have an apparently-unrelated
effect on another. Note that on many vehicles,
earth straps are used between certain
components, such as the engine/transmission
and the body, usually where there is no metalto-
metal contact between components, due to
flexible rubber mountings, etc.
21 To check whether a component is properly earthed, disconnect the battery, and connect one lead of an ohmmeter to a known good earth point. Connect the other lead to the wire or earth connection being tested. The resistance reading should be zero; if not, check the connection as follows.
22 If an earth connection is thought to be faulty, dismantle the connection, and clean back to bare metal both the bodyshell and the wire terminal, or the component’s earth connection mating surface. Be careful to remove all traces of dirt and corrosion, then use a knife to trim away any paint, so that a clean metal-to-metal joint is made. On reassembly, tighten the joint fasteners securely; if a wire terminal is being refitted, use serrated washers between the terminal and the bodyshell, to ensure a clean and secure connection. When the connection is remade, prevent the onset of corrosion in the future by applying a coat of petroleum jelly or silicone-based grease, or by spraying on (at regular intervals) a proprietary ignition sealer.
See also:
Fuses and relays
Fuses
If electrical components in the
vehicle are not working, a fuse may
have blown. Blown fuses are
identified by a broken wire within
the fuse. Check the appropriate
fuses before replacing an ...
Exhaust system - inspection, removal and refitting
Inspection
1 The exhaust system should be examined for
leaks, damage, and security at regular
intervals. To do this, apply the handbrake, then
start the engine and allow it to idle. Lie down on
e ...
Specifications
General
System type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . Multi-point electronic fuel injection
Application . . . . . . . . . . . . . . . . . ...